418 lines
12 KiB
C
418 lines
12 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2023 Intel Corporation
|
|
*/
|
|
|
|
#include "xe_gt_tlb_invalidation.h"
|
|
|
|
#include "abi/guc_actions_abi.h"
|
|
#include "xe_device.h"
|
|
#include "xe_gt.h"
|
|
#include "xe_guc.h"
|
|
#include "xe_guc_ct.h"
|
|
#include "xe_trace.h"
|
|
|
|
#define TLB_TIMEOUT (HZ / 4)
|
|
|
|
static void xe_gt_tlb_fence_timeout(struct work_struct *work)
|
|
{
|
|
struct xe_gt *gt = container_of(work, struct xe_gt,
|
|
tlb_invalidation.fence_tdr.work);
|
|
struct xe_gt_tlb_invalidation_fence *fence, *next;
|
|
|
|
spin_lock_irq(>->tlb_invalidation.pending_lock);
|
|
list_for_each_entry_safe(fence, next,
|
|
>->tlb_invalidation.pending_fences, link) {
|
|
s64 since_inval_ms = ktime_ms_delta(ktime_get(),
|
|
fence->invalidation_time);
|
|
|
|
if (msecs_to_jiffies(since_inval_ms) < TLB_TIMEOUT)
|
|
break;
|
|
|
|
trace_xe_gt_tlb_invalidation_fence_timeout(fence);
|
|
drm_err(>_to_xe(gt)->drm, "gt%d: TLB invalidation fence timeout, seqno=%d recv=%d",
|
|
gt->info.id, fence->seqno, gt->tlb_invalidation.seqno_recv);
|
|
|
|
list_del(&fence->link);
|
|
fence->base.error = -ETIME;
|
|
dma_fence_signal(&fence->base);
|
|
dma_fence_put(&fence->base);
|
|
}
|
|
if (!list_empty(>->tlb_invalidation.pending_fences))
|
|
queue_delayed_work(system_wq,
|
|
>->tlb_invalidation.fence_tdr,
|
|
TLB_TIMEOUT);
|
|
spin_unlock_irq(>->tlb_invalidation.pending_lock);
|
|
}
|
|
|
|
/**
|
|
* xe_gt_tlb_invalidation_init - Initialize GT TLB invalidation state
|
|
* @gt: graphics tile
|
|
*
|
|
* Initialize GT TLB invalidation state, purely software initialization, should
|
|
* be called once during driver load.
|
|
*
|
|
* Return: 0 on success, negative error code on error.
|
|
*/
|
|
int xe_gt_tlb_invalidation_init(struct xe_gt *gt)
|
|
{
|
|
gt->tlb_invalidation.seqno = 1;
|
|
INIT_LIST_HEAD(>->tlb_invalidation.pending_fences);
|
|
spin_lock_init(>->tlb_invalidation.pending_lock);
|
|
spin_lock_init(>->tlb_invalidation.lock);
|
|
gt->tlb_invalidation.fence_context = dma_fence_context_alloc(1);
|
|
INIT_DELAYED_WORK(>->tlb_invalidation.fence_tdr,
|
|
xe_gt_tlb_fence_timeout);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
__invalidation_fence_signal(struct xe_gt_tlb_invalidation_fence *fence)
|
|
{
|
|
trace_xe_gt_tlb_invalidation_fence_signal(fence);
|
|
dma_fence_signal(&fence->base);
|
|
dma_fence_put(&fence->base);
|
|
}
|
|
|
|
static void
|
|
invalidation_fence_signal(struct xe_gt_tlb_invalidation_fence *fence)
|
|
{
|
|
list_del(&fence->link);
|
|
__invalidation_fence_signal(fence);
|
|
}
|
|
|
|
/**
|
|
* xe_gt_tlb_invalidation_reset - Initialize GT TLB invalidation reset
|
|
* @gt: graphics tile
|
|
*
|
|
* Signal any pending invalidation fences, should be called during a GT reset
|
|
*/
|
|
void xe_gt_tlb_invalidation_reset(struct xe_gt *gt)
|
|
{
|
|
struct xe_gt_tlb_invalidation_fence *fence, *next;
|
|
struct xe_guc *guc = >->uc.guc;
|
|
int pending_seqno;
|
|
|
|
/*
|
|
* CT channel is already disabled at this point. No new TLB requests can
|
|
* appear.
|
|
*/
|
|
|
|
mutex_lock(>->uc.guc.ct.lock);
|
|
spin_lock_irq(>->tlb_invalidation.pending_lock);
|
|
cancel_delayed_work(>->tlb_invalidation.fence_tdr);
|
|
/*
|
|
* We might have various kworkers waiting for TLB flushes to complete
|
|
* which are not tracked with an explicit TLB fence, however at this
|
|
* stage that will never happen since the CT is already disabled, so
|
|
* make sure we signal them here under the assumption that we have
|
|
* completed a full GT reset.
|
|
*/
|
|
if (gt->tlb_invalidation.seqno == 1)
|
|
pending_seqno = TLB_INVALIDATION_SEQNO_MAX - 1;
|
|
else
|
|
pending_seqno = gt->tlb_invalidation.seqno - 1;
|
|
WRITE_ONCE(gt->tlb_invalidation.seqno_recv, pending_seqno);
|
|
wake_up_all(&guc->ct.wq);
|
|
|
|
list_for_each_entry_safe(fence, next,
|
|
>->tlb_invalidation.pending_fences, link)
|
|
invalidation_fence_signal(fence);
|
|
spin_unlock_irq(>->tlb_invalidation.pending_lock);
|
|
mutex_unlock(>->uc.guc.ct.lock);
|
|
}
|
|
|
|
static bool tlb_invalidation_seqno_past(struct xe_gt *gt, int seqno)
|
|
{
|
|
int seqno_recv = READ_ONCE(gt->tlb_invalidation.seqno_recv);
|
|
|
|
if (seqno - seqno_recv < -(TLB_INVALIDATION_SEQNO_MAX / 2))
|
|
return false;
|
|
|
|
if (seqno - seqno_recv > (TLB_INVALIDATION_SEQNO_MAX / 2))
|
|
return true;
|
|
|
|
return seqno_recv >= seqno;
|
|
}
|
|
|
|
static int send_tlb_invalidation(struct xe_guc *guc,
|
|
struct xe_gt_tlb_invalidation_fence *fence,
|
|
u32 *action, int len)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
int seqno;
|
|
int ret;
|
|
|
|
/*
|
|
* XXX: The seqno algorithm relies on TLB invalidation being processed
|
|
* in order which they currently are, if that changes the algorithm will
|
|
* need to be updated.
|
|
*/
|
|
|
|
mutex_lock(&guc->ct.lock);
|
|
seqno = gt->tlb_invalidation.seqno;
|
|
if (fence) {
|
|
fence->seqno = seqno;
|
|
trace_xe_gt_tlb_invalidation_fence_send(fence);
|
|
}
|
|
action[1] = seqno;
|
|
ret = xe_guc_ct_send_locked(&guc->ct, action, len,
|
|
G2H_LEN_DW_TLB_INVALIDATE, 1);
|
|
if (!ret && fence) {
|
|
spin_lock_irq(>->tlb_invalidation.pending_lock);
|
|
/*
|
|
* We haven't actually published the TLB fence as per
|
|
* pending_fences, but in theory our seqno could have already
|
|
* been written as we acquired the pending_lock. In such a case
|
|
* we can just go ahead and signal the fence here.
|
|
*/
|
|
if (tlb_invalidation_seqno_past(gt, seqno)) {
|
|
__invalidation_fence_signal(fence);
|
|
} else {
|
|
fence->invalidation_time = ktime_get();
|
|
list_add_tail(&fence->link,
|
|
>->tlb_invalidation.pending_fences);
|
|
|
|
if (list_is_singular(>->tlb_invalidation.pending_fences))
|
|
queue_delayed_work(system_wq,
|
|
>->tlb_invalidation.fence_tdr,
|
|
TLB_TIMEOUT);
|
|
}
|
|
spin_unlock_irq(>->tlb_invalidation.pending_lock);
|
|
} else if (ret < 0 && fence) {
|
|
__invalidation_fence_signal(fence);
|
|
}
|
|
if (!ret) {
|
|
gt->tlb_invalidation.seqno = (gt->tlb_invalidation.seqno + 1) %
|
|
TLB_INVALIDATION_SEQNO_MAX;
|
|
if (!gt->tlb_invalidation.seqno)
|
|
gt->tlb_invalidation.seqno = 1;
|
|
ret = seqno;
|
|
}
|
|
mutex_unlock(&guc->ct.lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define MAKE_INVAL_OP(type) ((type << XE_GUC_TLB_INVAL_TYPE_SHIFT) | \
|
|
XE_GUC_TLB_INVAL_MODE_HEAVY << XE_GUC_TLB_INVAL_MODE_SHIFT | \
|
|
XE_GUC_TLB_INVAL_FLUSH_CACHE)
|
|
|
|
/**
|
|
* xe_gt_tlb_invalidation_guc - Issue a TLB invalidation on this GT for the GuC
|
|
* @gt: graphics tile
|
|
*
|
|
* Issue a TLB invalidation for the GuC. Completion of TLB is asynchronous and
|
|
* caller can use seqno + xe_gt_tlb_invalidation_wait to wait for completion.
|
|
*
|
|
* Return: Seqno which can be passed to xe_gt_tlb_invalidation_wait on success,
|
|
* negative error code on error.
|
|
*/
|
|
int xe_gt_tlb_invalidation_guc(struct xe_gt *gt)
|
|
{
|
|
u32 action[] = {
|
|
XE_GUC_ACTION_TLB_INVALIDATION,
|
|
0, /* seqno, replaced in send_tlb_invalidation */
|
|
MAKE_INVAL_OP(XE_GUC_TLB_INVAL_GUC),
|
|
};
|
|
|
|
return send_tlb_invalidation(>->uc.guc, NULL, action,
|
|
ARRAY_SIZE(action));
|
|
}
|
|
|
|
/**
|
|
* xe_gt_tlb_invalidation_vma - Issue a TLB invalidation on this GT for a VMA
|
|
* @gt: graphics tile
|
|
* @fence: invalidation fence which will be signal on TLB invalidation
|
|
* completion, can be NULL
|
|
* @vma: VMA to invalidate
|
|
*
|
|
* Issue a range based TLB invalidation if supported, if not fallback to a full
|
|
* TLB invalidation. Completion of TLB is asynchronous and caller can either use
|
|
* the invalidation fence or seqno + xe_gt_tlb_invalidation_wait to wait for
|
|
* completion.
|
|
*
|
|
* Return: Seqno which can be passed to xe_gt_tlb_invalidation_wait on success,
|
|
* negative error code on error.
|
|
*/
|
|
int xe_gt_tlb_invalidation_vma(struct xe_gt *gt,
|
|
struct xe_gt_tlb_invalidation_fence *fence,
|
|
struct xe_vma *vma)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
#define MAX_TLB_INVALIDATION_LEN 7
|
|
u32 action[MAX_TLB_INVALIDATION_LEN];
|
|
int len = 0;
|
|
|
|
xe_gt_assert(gt, vma);
|
|
|
|
/* Execlists not supported */
|
|
if (gt_to_xe(gt)->info.force_execlist) {
|
|
if (fence)
|
|
__invalidation_fence_signal(fence);
|
|
|
|
return 0;
|
|
}
|
|
|
|
action[len++] = XE_GUC_ACTION_TLB_INVALIDATION;
|
|
action[len++] = 0; /* seqno, replaced in send_tlb_invalidation */
|
|
if (!xe->info.has_range_tlb_invalidation) {
|
|
action[len++] = MAKE_INVAL_OP(XE_GUC_TLB_INVAL_FULL);
|
|
} else {
|
|
u64 start = xe_vma_start(vma);
|
|
u64 length = xe_vma_size(vma);
|
|
u64 align, end;
|
|
|
|
if (length < SZ_4K)
|
|
length = SZ_4K;
|
|
|
|
/*
|
|
* We need to invalidate a higher granularity if start address
|
|
* is not aligned to length. When start is not aligned with
|
|
* length we need to find the length large enough to create an
|
|
* address mask covering the required range.
|
|
*/
|
|
align = roundup_pow_of_two(length);
|
|
start = ALIGN_DOWN(xe_vma_start(vma), align);
|
|
end = ALIGN(xe_vma_end(vma), align);
|
|
length = align;
|
|
while (start + length < end) {
|
|
length <<= 1;
|
|
start = ALIGN_DOWN(xe_vma_start(vma), length);
|
|
}
|
|
|
|
/*
|
|
* Minimum invalidation size for a 2MB page that the hardware
|
|
* expects is 16MB
|
|
*/
|
|
if (length >= SZ_2M) {
|
|
length = max_t(u64, SZ_16M, length);
|
|
start = ALIGN_DOWN(xe_vma_start(vma), length);
|
|
}
|
|
|
|
xe_gt_assert(gt, length >= SZ_4K);
|
|
xe_gt_assert(gt, is_power_of_2(length));
|
|
xe_gt_assert(gt, !(length & GENMASK(ilog2(SZ_16M) - 1, ilog2(SZ_2M) + 1)));
|
|
xe_gt_assert(gt, IS_ALIGNED(start, length));
|
|
|
|
action[len++] = MAKE_INVAL_OP(XE_GUC_TLB_INVAL_PAGE_SELECTIVE);
|
|
action[len++] = xe_vma_vm(vma)->usm.asid;
|
|
action[len++] = lower_32_bits(start);
|
|
action[len++] = upper_32_bits(start);
|
|
action[len++] = ilog2(length) - ilog2(SZ_4K);
|
|
}
|
|
|
|
xe_gt_assert(gt, len <= MAX_TLB_INVALIDATION_LEN);
|
|
|
|
return send_tlb_invalidation(>->uc.guc, fence, action, len);
|
|
}
|
|
|
|
/**
|
|
* xe_gt_tlb_invalidation_wait - Wait for TLB to complete
|
|
* @gt: graphics tile
|
|
* @seqno: seqno to wait which was returned from xe_gt_tlb_invalidation
|
|
*
|
|
* Wait for 200ms for a TLB invalidation to complete, in practice we always
|
|
* should receive the TLB invalidation within 200ms.
|
|
*
|
|
* Return: 0 on success, -ETIME on TLB invalidation timeout
|
|
*/
|
|
int xe_gt_tlb_invalidation_wait(struct xe_gt *gt, int seqno)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
struct xe_guc *guc = >->uc.guc;
|
|
struct drm_printer p = drm_err_printer(__func__);
|
|
int ret;
|
|
|
|
/* Execlists not supported */
|
|
if (gt_to_xe(gt)->info.force_execlist)
|
|
return 0;
|
|
|
|
/*
|
|
* XXX: See above, this algorithm only works if seqno are always in
|
|
* order
|
|
*/
|
|
ret = wait_event_timeout(guc->ct.wq,
|
|
tlb_invalidation_seqno_past(gt, seqno),
|
|
TLB_TIMEOUT);
|
|
if (!ret) {
|
|
drm_err(&xe->drm, "gt%d: TLB invalidation time'd out, seqno=%d, recv=%d\n",
|
|
gt->info.id, seqno, gt->tlb_invalidation.seqno_recv);
|
|
xe_guc_ct_print(&guc->ct, &p, true);
|
|
return -ETIME;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xe_guc_tlb_invalidation_done_handler - TLB invalidation done handler
|
|
* @guc: guc
|
|
* @msg: message indicating TLB invalidation done
|
|
* @len: length of message
|
|
*
|
|
* Parse seqno of TLB invalidation, wake any waiters for seqno, and signal any
|
|
* invalidation fences for seqno. Algorithm for this depends on seqno being
|
|
* received in-order and asserts this assumption.
|
|
*
|
|
* Return: 0 on success, -EPROTO for malformed messages.
|
|
*/
|
|
int xe_guc_tlb_invalidation_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
struct xe_gt_tlb_invalidation_fence *fence, *next;
|
|
unsigned long flags;
|
|
|
|
if (unlikely(len != 1))
|
|
return -EPROTO;
|
|
|
|
/*
|
|
* This can also be run both directly from the IRQ handler and also in
|
|
* process_g2h_msg(). Only one may process any individual CT message,
|
|
* however the order they are processed here could result in skipping a
|
|
* seqno. To handle that we just process all the seqnos from the last
|
|
* seqno_recv up to and including the one in msg[0]. The delta should be
|
|
* very small so there shouldn't be much of pending_fences we actually
|
|
* need to iterate over here.
|
|
*
|
|
* From GuC POV we expect the seqnos to always appear in-order, so if we
|
|
* see something later in the timeline we can be sure that anything
|
|
* appearing earlier has already signalled, just that we have yet to
|
|
* officially process the CT message like if racing against
|
|
* process_g2h_msg().
|
|
*/
|
|
spin_lock_irqsave(>->tlb_invalidation.pending_lock, flags);
|
|
if (tlb_invalidation_seqno_past(gt, msg[0])) {
|
|
spin_unlock_irqrestore(>->tlb_invalidation.pending_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* wake_up_all() and wait_event_timeout() already have the correct
|
|
* barriers.
|
|
*/
|
|
WRITE_ONCE(gt->tlb_invalidation.seqno_recv, msg[0]);
|
|
wake_up_all(&guc->ct.wq);
|
|
|
|
list_for_each_entry_safe(fence, next,
|
|
>->tlb_invalidation.pending_fences, link) {
|
|
trace_xe_gt_tlb_invalidation_fence_recv(fence);
|
|
|
|
if (!tlb_invalidation_seqno_past(gt, fence->seqno))
|
|
break;
|
|
|
|
invalidation_fence_signal(fence);
|
|
}
|
|
|
|
if (!list_empty(>->tlb_invalidation.pending_fences))
|
|
mod_delayed_work(system_wq,
|
|
>->tlb_invalidation.fence_tdr,
|
|
TLB_TIMEOUT);
|
|
else
|
|
cancel_delayed_work(>->tlb_invalidation.fence_tdr);
|
|
|
|
spin_unlock_irqrestore(>->tlb_invalidation.pending_lock, flags);
|
|
|
|
return 0;
|
|
}
|