775 lines
20 KiB
C
775 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2015 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*/
|
|
|
|
#ifndef __ARM64_KVM_HYP_SWITCH_H__
|
|
#define __ARM64_KVM_HYP_SWITCH_H__
|
|
|
|
#include <hyp/adjust_pc.h>
|
|
#include <hyp/fault.h>
|
|
|
|
#include <linux/arm-smccc.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/types.h>
|
|
#include <linux/jump_label.h>
|
|
#include <uapi/linux/psci.h>
|
|
|
|
#include <kvm/arm_psci.h>
|
|
|
|
#include <asm/barrier.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/extable.h>
|
|
#include <asm/kprobes.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_hyp.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_nested.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/traps.h>
|
|
|
|
struct kvm_exception_table_entry {
|
|
int insn, fixup;
|
|
};
|
|
|
|
extern struct kvm_exception_table_entry __start___kvm_ex_table;
|
|
extern struct kvm_exception_table_entry __stop___kvm_ex_table;
|
|
|
|
/* Check whether the FP regs are owned by the guest */
|
|
static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED;
|
|
}
|
|
|
|
/* Save the 32-bit only FPSIMD system register state */
|
|
static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu_el1_is_32bit(vcpu))
|
|
return;
|
|
|
|
__vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
|
|
}
|
|
|
|
static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* We are about to set CPTR_EL2.TFP to trap all floating point
|
|
* register accesses to EL2, however, the ARM ARM clearly states that
|
|
* traps are only taken to EL2 if the operation would not otherwise
|
|
* trap to EL1. Therefore, always make sure that for 32-bit guests,
|
|
* we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
|
|
* If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
|
|
* it will cause an exception.
|
|
*/
|
|
if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
|
|
write_sysreg(1 << 30, fpexc32_el2);
|
|
isb();
|
|
}
|
|
}
|
|
|
|
#define compute_clr_set(vcpu, reg, clr, set) \
|
|
do { \
|
|
u64 hfg; \
|
|
hfg = __vcpu_sys_reg(vcpu, reg) & ~__ ## reg ## _RES0; \
|
|
set |= hfg & __ ## reg ## _MASK; \
|
|
clr |= ~hfg & __ ## reg ## _nMASK; \
|
|
} while(0)
|
|
|
|
#define update_fgt_traps_cs(vcpu, reg, clr, set) \
|
|
do { \
|
|
struct kvm_cpu_context *hctxt = \
|
|
&this_cpu_ptr(&kvm_host_data)->host_ctxt; \
|
|
u64 c = 0, s = 0; \
|
|
\
|
|
ctxt_sys_reg(hctxt, reg) = read_sysreg_s(SYS_ ## reg); \
|
|
compute_clr_set(vcpu, reg, c, s); \
|
|
s |= set; \
|
|
c |= clr; \
|
|
if (c || s) { \
|
|
u64 val = __ ## reg ## _nMASK; \
|
|
val |= s; \
|
|
val &= ~c; \
|
|
write_sysreg_s(val, SYS_ ## reg); \
|
|
} \
|
|
} while(0)
|
|
|
|
#define update_fgt_traps(vcpu, reg) \
|
|
update_fgt_traps_cs(vcpu, reg, 0, 0)
|
|
|
|
/*
|
|
* Validate the fine grain trap masks.
|
|
* Check that the masks do not overlap and that all bits are accounted for.
|
|
*/
|
|
#define CHECK_FGT_MASKS(reg) \
|
|
do { \
|
|
BUILD_BUG_ON((__ ## reg ## _MASK) & (__ ## reg ## _nMASK)); \
|
|
BUILD_BUG_ON(~((__ ## reg ## _RES0) ^ (__ ## reg ## _MASK) ^ \
|
|
(__ ## reg ## _nMASK))); \
|
|
} while(0)
|
|
|
|
static inline bool cpu_has_amu(void)
|
|
{
|
|
u64 pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
|
|
|
|
return cpuid_feature_extract_unsigned_field(pfr0,
|
|
ID_AA64PFR0_EL1_AMU_SHIFT);
|
|
}
|
|
|
|
static inline void __activate_traps_hfgxtr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
|
|
u64 r_clr = 0, w_clr = 0, r_set = 0, w_set = 0, tmp;
|
|
u64 r_val, w_val;
|
|
|
|
CHECK_FGT_MASKS(HFGRTR_EL2);
|
|
CHECK_FGT_MASKS(HFGWTR_EL2);
|
|
CHECK_FGT_MASKS(HFGITR_EL2);
|
|
CHECK_FGT_MASKS(HDFGRTR_EL2);
|
|
CHECK_FGT_MASKS(HDFGWTR_EL2);
|
|
CHECK_FGT_MASKS(HAFGRTR_EL2);
|
|
CHECK_FGT_MASKS(HCRX_EL2);
|
|
|
|
if (!cpus_have_final_cap(ARM64_HAS_FGT))
|
|
return;
|
|
|
|
ctxt_sys_reg(hctxt, HFGRTR_EL2) = read_sysreg_s(SYS_HFGRTR_EL2);
|
|
ctxt_sys_reg(hctxt, HFGWTR_EL2) = read_sysreg_s(SYS_HFGWTR_EL2);
|
|
|
|
if (cpus_have_final_cap(ARM64_SME)) {
|
|
tmp = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK;
|
|
|
|
r_clr |= tmp;
|
|
w_clr |= tmp;
|
|
}
|
|
|
|
/*
|
|
* Trap guest writes to TCR_EL1 to prevent it from enabling HA or HD.
|
|
*/
|
|
if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
|
|
w_set |= HFGxTR_EL2_TCR_EL1_MASK;
|
|
|
|
if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
|
|
compute_clr_set(vcpu, HFGRTR_EL2, r_clr, r_set);
|
|
compute_clr_set(vcpu, HFGWTR_EL2, w_clr, w_set);
|
|
}
|
|
|
|
/* The default to trap everything not handled or supported in KVM. */
|
|
tmp = HFGxTR_EL2_nAMAIR2_EL1 | HFGxTR_EL2_nMAIR2_EL1 | HFGxTR_EL2_nS2POR_EL1 |
|
|
HFGxTR_EL2_nPOR_EL1 | HFGxTR_EL2_nPOR_EL0 | HFGxTR_EL2_nACCDATA_EL1;
|
|
|
|
r_val = __HFGRTR_EL2_nMASK & ~tmp;
|
|
r_val |= r_set;
|
|
r_val &= ~r_clr;
|
|
|
|
w_val = __HFGWTR_EL2_nMASK & ~tmp;
|
|
w_val |= w_set;
|
|
w_val &= ~w_clr;
|
|
|
|
write_sysreg_s(r_val, SYS_HFGRTR_EL2);
|
|
write_sysreg_s(w_val, SYS_HFGWTR_EL2);
|
|
|
|
if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu))
|
|
return;
|
|
|
|
update_fgt_traps(vcpu, HFGITR_EL2);
|
|
update_fgt_traps(vcpu, HDFGRTR_EL2);
|
|
update_fgt_traps(vcpu, HDFGWTR_EL2);
|
|
|
|
if (cpu_has_amu())
|
|
update_fgt_traps(vcpu, HAFGRTR_EL2);
|
|
}
|
|
|
|
static inline void __deactivate_traps_hfgxtr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
|
|
|
|
if (!cpus_have_final_cap(ARM64_HAS_FGT))
|
|
return;
|
|
|
|
write_sysreg_s(ctxt_sys_reg(hctxt, HFGRTR_EL2), SYS_HFGRTR_EL2);
|
|
write_sysreg_s(ctxt_sys_reg(hctxt, HFGWTR_EL2), SYS_HFGWTR_EL2);
|
|
|
|
if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu))
|
|
return;
|
|
|
|
write_sysreg_s(ctxt_sys_reg(hctxt, HFGITR_EL2), SYS_HFGITR_EL2);
|
|
write_sysreg_s(ctxt_sys_reg(hctxt, HDFGRTR_EL2), SYS_HDFGRTR_EL2);
|
|
write_sysreg_s(ctxt_sys_reg(hctxt, HDFGWTR_EL2), SYS_HDFGWTR_EL2);
|
|
|
|
if (cpu_has_amu())
|
|
write_sysreg_s(ctxt_sys_reg(hctxt, HAFGRTR_EL2), SYS_HAFGRTR_EL2);
|
|
}
|
|
|
|
static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
|
|
write_sysreg(1 << 15, hstr_el2);
|
|
|
|
/*
|
|
* Make sure we trap PMU access from EL0 to EL2. Also sanitize
|
|
* PMSELR_EL0 to make sure it never contains the cycle
|
|
* counter, which could make a PMXEVCNTR_EL0 access UNDEF at
|
|
* EL1 instead of being trapped to EL2.
|
|
*/
|
|
if (kvm_arm_support_pmu_v3()) {
|
|
struct kvm_cpu_context *hctxt;
|
|
|
|
write_sysreg(0, pmselr_el0);
|
|
|
|
hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
|
|
ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0);
|
|
write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
|
|
vcpu_set_flag(vcpu, PMUSERENR_ON_CPU);
|
|
}
|
|
|
|
vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
|
|
write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
|
|
|
|
if (cpus_have_final_cap(ARM64_HAS_HCX)) {
|
|
u64 hcrx = HCRX_GUEST_FLAGS;
|
|
if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
|
|
u64 clr = 0, set = 0;
|
|
|
|
compute_clr_set(vcpu, HCRX_EL2, clr, set);
|
|
|
|
hcrx |= set;
|
|
hcrx &= ~clr;
|
|
}
|
|
|
|
write_sysreg_s(hcrx, SYS_HCRX_EL2);
|
|
}
|
|
|
|
__activate_traps_hfgxtr(vcpu);
|
|
}
|
|
|
|
static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
|
|
{
|
|
write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);
|
|
|
|
write_sysreg(0, hstr_el2);
|
|
if (kvm_arm_support_pmu_v3()) {
|
|
struct kvm_cpu_context *hctxt;
|
|
|
|
hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
|
|
write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0);
|
|
vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU);
|
|
}
|
|
|
|
if (cpus_have_final_cap(ARM64_HAS_HCX))
|
|
write_sysreg_s(HCRX_HOST_FLAGS, SYS_HCRX_EL2);
|
|
|
|
__deactivate_traps_hfgxtr(vcpu);
|
|
}
|
|
|
|
static inline void ___activate_traps(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 hcr = vcpu->arch.hcr_el2;
|
|
|
|
if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
|
|
hcr |= HCR_TVM;
|
|
|
|
write_sysreg(hcr, hcr_el2);
|
|
|
|
if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
|
|
write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
|
|
}
|
|
|
|
static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* If we pended a virtual abort, preserve it until it gets
|
|
* cleared. See D1.14.3 (Virtual Interrupts) for details, but
|
|
* the crucial bit is "On taking a vSError interrupt,
|
|
* HCR_EL2.VSE is cleared to 0."
|
|
*/
|
|
if (vcpu->arch.hcr_el2 & HCR_VSE) {
|
|
vcpu->arch.hcr_el2 &= ~HCR_VSE;
|
|
vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
|
|
}
|
|
}
|
|
|
|
static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
|
|
{
|
|
return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
|
|
}
|
|
|
|
static bool kvm_hyp_handle_mops(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
*vcpu_pc(vcpu) = read_sysreg_el2(SYS_ELR);
|
|
arm64_mops_reset_regs(vcpu_gp_regs(vcpu), vcpu->arch.fault.esr_el2);
|
|
write_sysreg_el2(*vcpu_pc(vcpu), SYS_ELR);
|
|
|
|
/*
|
|
* Finish potential single step before executing the prologue
|
|
* instruction.
|
|
*/
|
|
*vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
|
|
write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
|
|
{
|
|
sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
|
|
__sve_restore_state(vcpu_sve_pffr(vcpu),
|
|
&vcpu->arch.ctxt.fp_regs.fpsr);
|
|
write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
|
|
}
|
|
|
|
/*
|
|
* We trap the first access to the FP/SIMD to save the host context and
|
|
* restore the guest context lazily.
|
|
* If FP/SIMD is not implemented, handle the trap and inject an undefined
|
|
* instruction exception to the guest. Similarly for trapped SVE accesses.
|
|
*/
|
|
static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
bool sve_guest;
|
|
u8 esr_ec;
|
|
u64 reg;
|
|
|
|
if (!system_supports_fpsimd())
|
|
return false;
|
|
|
|
sve_guest = vcpu_has_sve(vcpu);
|
|
esr_ec = kvm_vcpu_trap_get_class(vcpu);
|
|
|
|
/* Only handle traps the vCPU can support here: */
|
|
switch (esr_ec) {
|
|
case ESR_ELx_EC_FP_ASIMD:
|
|
break;
|
|
case ESR_ELx_EC_SVE:
|
|
if (!sve_guest)
|
|
return false;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
/* Valid trap. Switch the context: */
|
|
|
|
/* First disable enough traps to allow us to update the registers */
|
|
if (has_vhe() || has_hvhe()) {
|
|
reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN;
|
|
if (sve_guest)
|
|
reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
|
|
|
|
sysreg_clear_set(cpacr_el1, 0, reg);
|
|
} else {
|
|
reg = CPTR_EL2_TFP;
|
|
if (sve_guest)
|
|
reg |= CPTR_EL2_TZ;
|
|
|
|
sysreg_clear_set(cptr_el2, reg, 0);
|
|
}
|
|
isb();
|
|
|
|
/* Write out the host state if it's in the registers */
|
|
if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED)
|
|
__fpsimd_save_state(vcpu->arch.host_fpsimd_state);
|
|
|
|
/* Restore the guest state */
|
|
if (sve_guest)
|
|
__hyp_sve_restore_guest(vcpu);
|
|
else
|
|
__fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
|
|
|
|
/* Skip restoring fpexc32 for AArch64 guests */
|
|
if (!(read_sysreg(hcr_el2) & HCR_RW))
|
|
write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
|
|
|
|
vcpu->arch.fp_state = FP_STATE_GUEST_OWNED;
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
|
|
int rt = kvm_vcpu_sys_get_rt(vcpu);
|
|
u64 val = vcpu_get_reg(vcpu, rt);
|
|
|
|
/*
|
|
* The normal sysreg handling code expects to see the traps,
|
|
* let's not do anything here.
|
|
*/
|
|
if (vcpu->arch.hcr_el2 & HCR_TVM)
|
|
return false;
|
|
|
|
switch (sysreg) {
|
|
case SYS_SCTLR_EL1:
|
|
write_sysreg_el1(val, SYS_SCTLR);
|
|
break;
|
|
case SYS_TTBR0_EL1:
|
|
write_sysreg_el1(val, SYS_TTBR0);
|
|
break;
|
|
case SYS_TTBR1_EL1:
|
|
write_sysreg_el1(val, SYS_TTBR1);
|
|
break;
|
|
case SYS_TCR_EL1:
|
|
write_sysreg_el1(val, SYS_TCR);
|
|
break;
|
|
case SYS_ESR_EL1:
|
|
write_sysreg_el1(val, SYS_ESR);
|
|
break;
|
|
case SYS_FAR_EL1:
|
|
write_sysreg_el1(val, SYS_FAR);
|
|
break;
|
|
case SYS_AFSR0_EL1:
|
|
write_sysreg_el1(val, SYS_AFSR0);
|
|
break;
|
|
case SYS_AFSR1_EL1:
|
|
write_sysreg_el1(val, SYS_AFSR1);
|
|
break;
|
|
case SYS_MAIR_EL1:
|
|
write_sysreg_el1(val, SYS_MAIR);
|
|
break;
|
|
case SYS_AMAIR_EL1:
|
|
write_sysreg_el1(val, SYS_AMAIR);
|
|
break;
|
|
case SYS_CONTEXTIDR_EL1:
|
|
write_sysreg_el1(val, SYS_CONTEXTIDR);
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
__kvm_skip_instr(vcpu);
|
|
return true;
|
|
}
|
|
|
|
static inline bool esr_is_ptrauth_trap(u64 esr)
|
|
{
|
|
switch (esr_sys64_to_sysreg(esr)) {
|
|
case SYS_APIAKEYLO_EL1:
|
|
case SYS_APIAKEYHI_EL1:
|
|
case SYS_APIBKEYLO_EL1:
|
|
case SYS_APIBKEYHI_EL1:
|
|
case SYS_APDAKEYLO_EL1:
|
|
case SYS_APDAKEYHI_EL1:
|
|
case SYS_APDBKEYLO_EL1:
|
|
case SYS_APDBKEYHI_EL1:
|
|
case SYS_APGAKEYLO_EL1:
|
|
case SYS_APGAKEYHI_EL1:
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
#define __ptrauth_save_key(ctxt, key) \
|
|
do { \
|
|
u64 __val; \
|
|
__val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \
|
|
ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val; \
|
|
__val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \
|
|
ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val; \
|
|
} while(0)
|
|
|
|
DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
|
|
|
|
static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
struct kvm_cpu_context *ctxt;
|
|
u64 val;
|
|
|
|
if (!vcpu_has_ptrauth(vcpu))
|
|
return false;
|
|
|
|
ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
|
|
__ptrauth_save_key(ctxt, APIA);
|
|
__ptrauth_save_key(ctxt, APIB);
|
|
__ptrauth_save_key(ctxt, APDA);
|
|
__ptrauth_save_key(ctxt, APDB);
|
|
__ptrauth_save_key(ctxt, APGA);
|
|
|
|
vcpu_ptrauth_enable(vcpu);
|
|
|
|
val = read_sysreg(hcr_el2);
|
|
val |= (HCR_API | HCR_APK);
|
|
write_sysreg(val, hcr_el2);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct arch_timer_context *ctxt;
|
|
u32 sysreg;
|
|
u64 val;
|
|
|
|
/*
|
|
* We only get here for 64bit guests, 32bit guests will hit
|
|
* the long and winding road all the way to the standard
|
|
* handling. Yes, it sucks to be irrelevant.
|
|
*/
|
|
sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
|
|
|
|
switch (sysreg) {
|
|
case SYS_CNTPCT_EL0:
|
|
case SYS_CNTPCTSS_EL0:
|
|
if (vcpu_has_nv(vcpu)) {
|
|
if (is_hyp_ctxt(vcpu)) {
|
|
ctxt = vcpu_hptimer(vcpu);
|
|
break;
|
|
}
|
|
|
|
/* Check for guest hypervisor trapping */
|
|
val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
|
|
if (!vcpu_el2_e2h_is_set(vcpu))
|
|
val = (val & CNTHCTL_EL1PCTEN) << 10;
|
|
|
|
if (!(val & (CNTHCTL_EL1PCTEN << 10)))
|
|
return false;
|
|
}
|
|
|
|
ctxt = vcpu_ptimer(vcpu);
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
val = arch_timer_read_cntpct_el0();
|
|
|
|
if (ctxt->offset.vm_offset)
|
|
val -= *kern_hyp_va(ctxt->offset.vm_offset);
|
|
if (ctxt->offset.vcpu_offset)
|
|
val -= *kern_hyp_va(ctxt->offset.vcpu_offset);
|
|
|
|
vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val);
|
|
__kvm_skip_instr(vcpu);
|
|
return true;
|
|
}
|
|
|
|
static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
|
|
int rt = kvm_vcpu_sys_get_rt(vcpu);
|
|
u64 val = vcpu_get_reg(vcpu, rt);
|
|
|
|
if (sysreg != SYS_TCR_EL1)
|
|
return false;
|
|
|
|
/*
|
|
* Affected parts do not advertise support for hardware Access Flag /
|
|
* Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying
|
|
* control bits are still functional. The architecture requires these be
|
|
* RES0 on systems that do not implement FEAT_HAFDBS.
|
|
*
|
|
* Uphold the requirements of the architecture by masking guest writes
|
|
* to TCR_EL1.{HA,HD} here.
|
|
*/
|
|
val &= ~(TCR_HD | TCR_HA);
|
|
write_sysreg_el1(val, SYS_TCR);
|
|
__kvm_skip_instr(vcpu);
|
|
return true;
|
|
}
|
|
|
|
static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
|
|
handle_tx2_tvm(vcpu))
|
|
return true;
|
|
|
|
if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) &&
|
|
handle_ampere1_tcr(vcpu))
|
|
return true;
|
|
|
|
if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
|
|
__vgic_v3_perform_cpuif_access(vcpu) == 1)
|
|
return true;
|
|
|
|
if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
|
|
return kvm_hyp_handle_ptrauth(vcpu, exit_code);
|
|
|
|
if (kvm_hyp_handle_cntpct(vcpu))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
|
|
__vgic_v3_perform_cpuif_access(vcpu) == 1)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
if (!__populate_fault_info(vcpu))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
__alias(kvm_hyp_handle_memory_fault);
|
|
static bool kvm_hyp_handle_watchpt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
__alias(kvm_hyp_handle_memory_fault);
|
|
|
|
static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
if (kvm_hyp_handle_memory_fault(vcpu, exit_code))
|
|
return true;
|
|
|
|
if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
|
|
bool valid;
|
|
|
|
valid = kvm_vcpu_trap_is_translation_fault(vcpu) &&
|
|
kvm_vcpu_dabt_isvalid(vcpu) &&
|
|
!kvm_vcpu_abt_issea(vcpu) &&
|
|
!kvm_vcpu_abt_iss1tw(vcpu);
|
|
|
|
if (valid) {
|
|
int ret = __vgic_v2_perform_cpuif_access(vcpu);
|
|
|
|
if (ret == 1)
|
|
return true;
|
|
|
|
/* Promote an illegal access to an SError.*/
|
|
if (ret == -1)
|
|
*exit_code = ARM_EXCEPTION_EL1_SERROR;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
|
|
|
|
static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
|
|
|
|
static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
|
|
|
|
/*
|
|
* Allow the hypervisor to handle the exit with an exit handler if it has one.
|
|
*
|
|
* Returns true if the hypervisor handled the exit, and control should go back
|
|
* to the guest, or false if it hasn't.
|
|
*/
|
|
static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
|
|
exit_handler_fn fn;
|
|
|
|
fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
|
|
|
|
if (fn)
|
|
return fn(vcpu, exit_code);
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
/*
|
|
* Check for the conditions of Cortex-A510's #2077057. When these occur
|
|
* SPSR_EL2 can't be trusted, but isn't needed either as it is
|
|
* unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
|
|
* Are we single-stepping the guest, and took a PAC exception from the
|
|
* active-not-pending state?
|
|
*/
|
|
if (cpus_have_final_cap(ARM64_WORKAROUND_2077057) &&
|
|
vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
|
|
*vcpu_cpsr(vcpu) & DBG_SPSR_SS &&
|
|
ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
|
|
write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
|
|
|
|
vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
|
|
}
|
|
|
|
/*
|
|
* Return true when we were able to fixup the guest exit and should return to
|
|
* the guest, false when we should restore the host state and return to the
|
|
* main run loop.
|
|
*/
|
|
static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
/*
|
|
* Save PSTATE early so that we can evaluate the vcpu mode
|
|
* early on.
|
|
*/
|
|
synchronize_vcpu_pstate(vcpu, exit_code);
|
|
|
|
/*
|
|
* Check whether we want to repaint the state one way or
|
|
* another.
|
|
*/
|
|
early_exit_filter(vcpu, exit_code);
|
|
|
|
if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
|
|
vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
|
|
|
|
if (ARM_SERROR_PENDING(*exit_code) &&
|
|
ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
|
|
u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
|
|
|
|
/*
|
|
* HVC already have an adjusted PC, which we need to
|
|
* correct in order to return to after having injected
|
|
* the SError.
|
|
*
|
|
* SMC, on the other hand, is *trapped*, meaning its
|
|
* preferred return address is the SMC itself.
|
|
*/
|
|
if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
|
|
write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
|
|
}
|
|
|
|
/*
|
|
* We're using the raw exception code in order to only process
|
|
* the trap if no SError is pending. We will come back to the
|
|
* same PC once the SError has been injected, and replay the
|
|
* trapping instruction.
|
|
*/
|
|
if (*exit_code != ARM_EXCEPTION_TRAP)
|
|
goto exit;
|
|
|
|
/* Check if there's an exit handler and allow it to handle the exit. */
|
|
if (kvm_hyp_handle_exit(vcpu, exit_code))
|
|
goto guest;
|
|
exit:
|
|
/* Return to the host kernel and handle the exit */
|
|
return false;
|
|
|
|
guest:
|
|
/* Re-enter the guest */
|
|
asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
|
|
return true;
|
|
}
|
|
|
|
static inline void __kvm_unexpected_el2_exception(void)
|
|
{
|
|
extern char __guest_exit_panic[];
|
|
unsigned long addr, fixup;
|
|
struct kvm_exception_table_entry *entry, *end;
|
|
unsigned long elr_el2 = read_sysreg(elr_el2);
|
|
|
|
entry = &__start___kvm_ex_table;
|
|
end = &__stop___kvm_ex_table;
|
|
|
|
while (entry < end) {
|
|
addr = (unsigned long)&entry->insn + entry->insn;
|
|
fixup = (unsigned long)&entry->fixup + entry->fixup;
|
|
|
|
if (addr != elr_el2) {
|
|
entry++;
|
|
continue;
|
|
}
|
|
|
|
write_sysreg(fixup, elr_el2);
|
|
return;
|
|
}
|
|
|
|
/* Trigger a panic after restoring the hyp context. */
|
|
write_sysreg(__guest_exit_panic, elr_el2);
|
|
}
|
|
|
|
#endif /* __ARM64_KVM_HYP_SWITCH_H__ */
|