610 lines
14 KiB
C
610 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
|
|
* using the CPU's debug registers. Derived from
|
|
* "arch/x86/kernel/hw_breakpoint.c"
|
|
*
|
|
* Copyright 2010 IBM Corporation
|
|
* Author: K.Prasad <prasad@linux.vnet.ibm.com>
|
|
*/
|
|
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <asm/hw_breakpoint.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sstep.h>
|
|
#include <asm/debug.h>
|
|
#include <asm/hvcall.h>
|
|
#include <asm/inst.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
/*
|
|
* Stores the breakpoints currently in use on each breakpoint address
|
|
* register for every cpu
|
|
*/
|
|
static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM_MAX]);
|
|
|
|
/*
|
|
* Returns total number of data or instruction breakpoints available.
|
|
*/
|
|
int hw_breakpoint_slots(int type)
|
|
{
|
|
if (type == TYPE_DATA)
|
|
return nr_wp_slots();
|
|
return 0; /* no instruction breakpoints available */
|
|
}
|
|
|
|
|
|
/*
|
|
* Install a perf counter breakpoint.
|
|
*
|
|
* We seek a free debug address register and use it for this
|
|
* breakpoint.
|
|
*
|
|
* Atomic: we hold the counter->ctx->lock and we only handle variables
|
|
* and registers local to this cpu.
|
|
*/
|
|
int arch_install_hw_breakpoint(struct perf_event *bp)
|
|
{
|
|
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
|
|
struct perf_event **slot;
|
|
int i;
|
|
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
slot = this_cpu_ptr(&bp_per_reg[i]);
|
|
if (!*slot) {
|
|
*slot = bp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot"))
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* Do not install DABR values if the instruction must be single-stepped.
|
|
* If so, DABR will be populated in single_step_dabr_instruction().
|
|
*/
|
|
if (!info->perf_single_step)
|
|
__set_breakpoint(i, info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Uninstall the breakpoint contained in the given counter.
|
|
*
|
|
* First we search the debug address register it uses and then we disable
|
|
* it.
|
|
*
|
|
* Atomic: we hold the counter->ctx->lock and we only handle variables
|
|
* and registers local to this cpu.
|
|
*/
|
|
void arch_uninstall_hw_breakpoint(struct perf_event *bp)
|
|
{
|
|
struct arch_hw_breakpoint null_brk = {0};
|
|
struct perf_event **slot;
|
|
int i;
|
|
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
slot = this_cpu_ptr(&bp_per_reg[i]);
|
|
if (*slot == bp) {
|
|
*slot = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot"))
|
|
return;
|
|
|
|
__set_breakpoint(i, &null_brk);
|
|
}
|
|
|
|
static bool is_ptrace_bp(struct perf_event *bp)
|
|
{
|
|
return bp->overflow_handler == ptrace_triggered;
|
|
}
|
|
|
|
/*
|
|
* Check for virtual address in kernel space.
|
|
*/
|
|
int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
|
|
{
|
|
return is_kernel_addr(hw->address);
|
|
}
|
|
|
|
int arch_bp_generic_fields(int type, int *gen_bp_type)
|
|
{
|
|
*gen_bp_type = 0;
|
|
if (type & HW_BRK_TYPE_READ)
|
|
*gen_bp_type |= HW_BREAKPOINT_R;
|
|
if (type & HW_BRK_TYPE_WRITE)
|
|
*gen_bp_type |= HW_BREAKPOINT_W;
|
|
if (*gen_bp_type == 0)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Watchpoint match range is always doubleword(8 bytes) aligned on
|
|
* powerpc. If the given range is crossing doubleword boundary, we
|
|
* need to increase the length such that next doubleword also get
|
|
* covered. Ex,
|
|
*
|
|
* address len = 6 bytes
|
|
* |=========.
|
|
* |------------v--|------v--------|
|
|
* | | | | | | | | | | | | | | | | |
|
|
* |---------------|---------------|
|
|
* <---8 bytes--->
|
|
*
|
|
* In this case, we should configure hw as:
|
|
* start_addr = address & ~(HW_BREAKPOINT_SIZE - 1)
|
|
* len = 16 bytes
|
|
*
|
|
* @start_addr is inclusive but @end_addr is exclusive.
|
|
*/
|
|
static int hw_breakpoint_validate_len(struct arch_hw_breakpoint *hw)
|
|
{
|
|
u16 max_len = DABR_MAX_LEN;
|
|
u16 hw_len;
|
|
unsigned long start_addr, end_addr;
|
|
|
|
start_addr = ALIGN_DOWN(hw->address, HW_BREAKPOINT_SIZE);
|
|
end_addr = ALIGN(hw->address + hw->len, HW_BREAKPOINT_SIZE);
|
|
hw_len = end_addr - start_addr;
|
|
|
|
if (dawr_enabled()) {
|
|
max_len = DAWR_MAX_LEN;
|
|
/* DAWR region can't cross 512 bytes boundary on p10 predecessors */
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_31) &&
|
|
(ALIGN_DOWN(start_addr, SZ_512) != ALIGN_DOWN(end_addr - 1, SZ_512)))
|
|
return -EINVAL;
|
|
} else if (IS_ENABLED(CONFIG_PPC_8xx)) {
|
|
/* 8xx can setup a range without limitation */
|
|
max_len = U16_MAX;
|
|
}
|
|
|
|
if (hw_len > max_len)
|
|
return -EINVAL;
|
|
|
|
hw->hw_len = hw_len;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Validate the arch-specific HW Breakpoint register settings
|
|
*/
|
|
int hw_breakpoint_arch_parse(struct perf_event *bp,
|
|
const struct perf_event_attr *attr,
|
|
struct arch_hw_breakpoint *hw)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
if (!bp || !attr->bp_len)
|
|
return ret;
|
|
|
|
hw->type = HW_BRK_TYPE_TRANSLATE;
|
|
if (attr->bp_type & HW_BREAKPOINT_R)
|
|
hw->type |= HW_BRK_TYPE_READ;
|
|
if (attr->bp_type & HW_BREAKPOINT_W)
|
|
hw->type |= HW_BRK_TYPE_WRITE;
|
|
if (hw->type == HW_BRK_TYPE_TRANSLATE)
|
|
/* must set alteast read or write */
|
|
return ret;
|
|
if (!attr->exclude_user)
|
|
hw->type |= HW_BRK_TYPE_USER;
|
|
if (!attr->exclude_kernel)
|
|
hw->type |= HW_BRK_TYPE_KERNEL;
|
|
if (!attr->exclude_hv)
|
|
hw->type |= HW_BRK_TYPE_HYP;
|
|
hw->address = attr->bp_addr;
|
|
hw->len = attr->bp_len;
|
|
|
|
if (!ppc_breakpoint_available())
|
|
return -ENODEV;
|
|
|
|
return hw_breakpoint_validate_len(hw);
|
|
}
|
|
|
|
/*
|
|
* Restores the breakpoint on the debug registers.
|
|
* Invoke this function if it is known that the execution context is
|
|
* about to change to cause loss of MSR_SE settings.
|
|
*
|
|
* The perf watchpoint will simply re-trigger once the thread is started again,
|
|
* and the watchpoint handler will set up MSR_SE and perf_single_step as
|
|
* needed.
|
|
*/
|
|
void thread_change_pc(struct task_struct *tsk, struct pt_regs *regs)
|
|
{
|
|
struct arch_hw_breakpoint *info;
|
|
int i;
|
|
|
|
preempt_disable();
|
|
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
struct perf_event *bp = __this_cpu_read(bp_per_reg[i]);
|
|
|
|
if (unlikely(bp && counter_arch_bp(bp)->perf_single_step))
|
|
goto reset;
|
|
}
|
|
goto out;
|
|
|
|
reset:
|
|
regs_set_return_msr(regs, regs->msr & ~MSR_SE);
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
info = counter_arch_bp(__this_cpu_read(bp_per_reg[i]));
|
|
__set_breakpoint(i, info);
|
|
info->perf_single_step = false;
|
|
}
|
|
|
|
out:
|
|
preempt_enable();
|
|
}
|
|
|
|
static bool is_larx_stcx_instr(int type)
|
|
{
|
|
return type == LARX || type == STCX;
|
|
}
|
|
|
|
static bool is_octword_vsx_instr(int type, int size)
|
|
{
|
|
return ((type == LOAD_VSX || type == STORE_VSX) && size == 32);
|
|
}
|
|
|
|
/*
|
|
* We've failed in reliably handling the hw-breakpoint. Unregister
|
|
* it and throw a warning message to let the user know about it.
|
|
*/
|
|
static void handler_error(struct perf_event *bp)
|
|
{
|
|
WARN(1, "Unable to handle hardware breakpoint. Breakpoint at 0x%lx will be disabled.",
|
|
counter_arch_bp(bp)->address);
|
|
perf_event_disable_inatomic(bp);
|
|
}
|
|
|
|
static void larx_stcx_err(struct perf_event *bp)
|
|
{
|
|
printk_ratelimited("Breakpoint hit on instruction that can't be emulated. Breakpoint at 0x%lx will be disabled.\n",
|
|
counter_arch_bp(bp)->address);
|
|
perf_event_disable_inatomic(bp);
|
|
}
|
|
|
|
static bool stepping_handler(struct pt_regs *regs, struct perf_event **bp,
|
|
int *hit, ppc_inst_t instr)
|
|
{
|
|
int i;
|
|
int stepped;
|
|
|
|
/* Do not emulate user-space instructions, instead single-step them */
|
|
if (user_mode(regs)) {
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
if (!hit[i])
|
|
continue;
|
|
|
|
counter_arch_bp(bp[i])->perf_single_step = true;
|
|
bp[i] = NULL;
|
|
}
|
|
regs_set_return_msr(regs, regs->msr | MSR_SE);
|
|
return false;
|
|
}
|
|
|
|
stepped = emulate_step(regs, instr);
|
|
if (!stepped) {
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
if (!hit[i])
|
|
continue;
|
|
handler_error(bp[i]);
|
|
bp[i] = NULL;
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void handle_p10dd1_spurious_exception(struct perf_event **bp,
|
|
int *hit, unsigned long ea)
|
|
{
|
|
int i;
|
|
unsigned long hw_end_addr;
|
|
|
|
/*
|
|
* Handle spurious exception only when any bp_per_reg is set.
|
|
* Otherwise this might be created by xmon and not actually a
|
|
* spurious exception.
|
|
*/
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
struct arch_hw_breakpoint *info;
|
|
|
|
if (!bp[i])
|
|
continue;
|
|
|
|
info = counter_arch_bp(bp[i]);
|
|
|
|
hw_end_addr = ALIGN(info->address + info->len, HW_BREAKPOINT_SIZE);
|
|
|
|
/*
|
|
* Ending address of DAWR range is less than starting
|
|
* address of op.
|
|
*/
|
|
if ((hw_end_addr - 1) >= ea)
|
|
continue;
|
|
|
|
/*
|
|
* Those addresses need to be in the same or in two
|
|
* consecutive 512B blocks;
|
|
*/
|
|
if (((hw_end_addr - 1) >> 10) != (ea >> 10))
|
|
continue;
|
|
|
|
/*
|
|
* 'op address + 64B' generates an address that has a
|
|
* carry into bit 52 (crosses 2K boundary).
|
|
*/
|
|
if ((ea & 0x800) == ((ea + 64) & 0x800))
|
|
continue;
|
|
|
|
break;
|
|
}
|
|
|
|
if (i == nr_wp_slots())
|
|
return;
|
|
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
if (bp[i]) {
|
|
hit[i] = 1;
|
|
counter_arch_bp(bp[i])->type |= HW_BRK_TYPE_EXTRANEOUS_IRQ;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle a DABR or DAWR exception.
|
|
*
|
|
* Called in atomic context.
|
|
*/
|
|
int hw_breakpoint_handler(struct die_args *args)
|
|
{
|
|
bool err = false;
|
|
int rc = NOTIFY_STOP;
|
|
struct perf_event *bp[HBP_NUM_MAX] = { NULL };
|
|
struct pt_regs *regs = args->regs;
|
|
int i;
|
|
int hit[HBP_NUM_MAX] = {0};
|
|
int nr_hit = 0;
|
|
bool ptrace_bp = false;
|
|
ppc_inst_t instr = ppc_inst(0);
|
|
int type = 0;
|
|
int size = 0;
|
|
unsigned long ea = 0;
|
|
|
|
/* Disable breakpoints during exception handling */
|
|
hw_breakpoint_disable();
|
|
|
|
/*
|
|
* The counter may be concurrently released but that can only
|
|
* occur from a call_rcu() path. We can then safely fetch
|
|
* the breakpoint, use its callback, touch its counter
|
|
* while we are in an rcu_read_lock() path.
|
|
*/
|
|
rcu_read_lock();
|
|
|
|
if (!IS_ENABLED(CONFIG_PPC_8xx))
|
|
wp_get_instr_detail(regs, &instr, &type, &size, &ea);
|
|
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
struct arch_hw_breakpoint *info;
|
|
|
|
bp[i] = __this_cpu_read(bp_per_reg[i]);
|
|
if (!bp[i])
|
|
continue;
|
|
|
|
info = counter_arch_bp(bp[i]);
|
|
info->type &= ~HW_BRK_TYPE_EXTRANEOUS_IRQ;
|
|
|
|
if (wp_check_constraints(regs, instr, ea, type, size, info)) {
|
|
if (!IS_ENABLED(CONFIG_PPC_8xx) &&
|
|
ppc_inst_equal(instr, ppc_inst(0))) {
|
|
handler_error(bp[i]);
|
|
bp[i] = NULL;
|
|
err = 1;
|
|
continue;
|
|
}
|
|
|
|
if (is_ptrace_bp(bp[i]))
|
|
ptrace_bp = true;
|
|
hit[i] = 1;
|
|
nr_hit++;
|
|
}
|
|
}
|
|
|
|
if (err)
|
|
goto reset;
|
|
|
|
if (!nr_hit) {
|
|
/* Workaround for Power10 DD1 */
|
|
if (!IS_ENABLED(CONFIG_PPC_8xx) && mfspr(SPRN_PVR) == 0x800100 &&
|
|
is_octword_vsx_instr(type, size)) {
|
|
handle_p10dd1_spurious_exception(bp, hit, ea);
|
|
} else {
|
|
rc = NOTIFY_DONE;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return early after invoking user-callback function without restoring
|
|
* DABR if the breakpoint is from ptrace which always operates in
|
|
* one-shot mode. The ptrace-ed process will receive the SIGTRAP signal
|
|
* generated in do_dabr().
|
|
*/
|
|
if (ptrace_bp) {
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
if (!hit[i] || !is_ptrace_bp(bp[i]))
|
|
continue;
|
|
perf_bp_event(bp[i], regs);
|
|
bp[i] = NULL;
|
|
}
|
|
rc = NOTIFY_DONE;
|
|
goto reset;
|
|
}
|
|
|
|
if (!IS_ENABLED(CONFIG_PPC_8xx)) {
|
|
if (is_larx_stcx_instr(type)) {
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
if (!hit[i])
|
|
continue;
|
|
larx_stcx_err(bp[i]);
|
|
bp[i] = NULL;
|
|
}
|
|
goto reset;
|
|
}
|
|
|
|
if (!stepping_handler(regs, bp, hit, instr))
|
|
goto reset;
|
|
}
|
|
|
|
/*
|
|
* As a policy, the callback is invoked in a 'trigger-after-execute'
|
|
* fashion
|
|
*/
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
if (!hit[i])
|
|
continue;
|
|
if (!(counter_arch_bp(bp[i])->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
|
|
perf_bp_event(bp[i], regs);
|
|
}
|
|
|
|
reset:
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
if (!bp[i])
|
|
continue;
|
|
__set_breakpoint(i, counter_arch_bp(bp[i]));
|
|
}
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
return rc;
|
|
}
|
|
NOKPROBE_SYMBOL(hw_breakpoint_handler);
|
|
|
|
/*
|
|
* Handle single-step exceptions following a DABR hit.
|
|
*
|
|
* Called in atomic context.
|
|
*/
|
|
static int single_step_dabr_instruction(struct die_args *args)
|
|
{
|
|
struct pt_regs *regs = args->regs;
|
|
bool found = false;
|
|
|
|
/*
|
|
* Check if we are single-stepping as a result of a
|
|
* previous HW Breakpoint exception
|
|
*/
|
|
for (int i = 0; i < nr_wp_slots(); i++) {
|
|
struct perf_event *bp;
|
|
struct arch_hw_breakpoint *info;
|
|
|
|
bp = __this_cpu_read(bp_per_reg[i]);
|
|
|
|
if (!bp)
|
|
continue;
|
|
|
|
info = counter_arch_bp(bp);
|
|
|
|
if (!info->perf_single_step)
|
|
continue;
|
|
|
|
found = true;
|
|
|
|
/*
|
|
* We shall invoke the user-defined callback function in the
|
|
* single stepping handler to confirm to 'trigger-after-execute'
|
|
* semantics
|
|
*/
|
|
if (!(info->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
|
|
perf_bp_event(bp, regs);
|
|
|
|
info->perf_single_step = false;
|
|
__set_breakpoint(i, counter_arch_bp(bp));
|
|
}
|
|
|
|
/*
|
|
* If the process was being single-stepped by ptrace, let the
|
|
* other single-step actions occur (e.g. generate SIGTRAP).
|
|
*/
|
|
if (!found || test_thread_flag(TIF_SINGLESTEP))
|
|
return NOTIFY_DONE;
|
|
|
|
return NOTIFY_STOP;
|
|
}
|
|
NOKPROBE_SYMBOL(single_step_dabr_instruction);
|
|
|
|
/*
|
|
* Handle debug exception notifications.
|
|
*
|
|
* Called in atomic context.
|
|
*/
|
|
int hw_breakpoint_exceptions_notify(
|
|
struct notifier_block *unused, unsigned long val, void *data)
|
|
{
|
|
int ret = NOTIFY_DONE;
|
|
|
|
switch (val) {
|
|
case DIE_DABR_MATCH:
|
|
ret = hw_breakpoint_handler(data);
|
|
break;
|
|
case DIE_SSTEP:
|
|
ret = single_step_dabr_instruction(data);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
NOKPROBE_SYMBOL(hw_breakpoint_exceptions_notify);
|
|
|
|
/*
|
|
* Release the user breakpoints used by ptrace
|
|
*/
|
|
void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
|
|
{
|
|
int i;
|
|
struct thread_struct *t = &tsk->thread;
|
|
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
unregister_hw_breakpoint(t->ptrace_bps[i]);
|
|
t->ptrace_bps[i] = NULL;
|
|
}
|
|
}
|
|
|
|
void hw_breakpoint_pmu_read(struct perf_event *bp)
|
|
{
|
|
/* TODO */
|
|
}
|
|
|
|
void ptrace_triggered(struct perf_event *bp,
|
|
struct perf_sample_data *data, struct pt_regs *regs)
|
|
{
|
|
struct perf_event_attr attr;
|
|
|
|
/*
|
|
* Disable the breakpoint request here since ptrace has defined a
|
|
* one-shot behaviour for breakpoint exceptions in PPC64.
|
|
* The SIGTRAP signal is generated automatically for us in do_dabr().
|
|
* We don't have to do anything about that here
|
|
*/
|
|
attr = bp->attr;
|
|
attr.disabled = true;
|
|
modify_user_hw_breakpoint(bp, &attr);
|
|
}
|